ArchLoot 價格AL
上架
買入報價幣種:
USD
您今天對 ArchLoot 感覺如何?
良好糟糕
注意:此資訊僅供參考。
ArchLoot 今日價格
ArchLoot 的即時價格是今天每 (AL / USD) $0.1536,目前市值為 $91.15M USD。24 小時交易量為 $5.36M USD。AL 至 USD 的價格為即時更新。ArchLoot 在過去 24 小時內的變化為 8.42%。其流通供應量為 593,353,540 。
AL 的最高價格是多少?
AL 的歷史最高價(ATH)為 $1.85,於 2022-11-23 錄得。
AL 的最低價格是多少?
AL 的歷史最低價(ATL)為 $0.08637,於 2024-08-05 錄得。
ArchLoot 價格預測
什麼時候是購買 AL 的好時機? 我現在應該買入還是賣出 AL?
在決定買入還是賣出 AL 時,您必須先考慮自己的交易策略。長期交易者和短期交易者的交易活動也會有所不同。Bitget AL 技術分析 可以提供您交易參考。
根據 AL 4 小時技術分析,交易訊號為 強力買入。
根據 AL 1 日技術分析,交易訊號為 強力買入。
根據 AL 1 週技術分析,交易訊號為 買入。
AL 在 2026 的價格是多少?
根據 AL 的歷史價格表現預測模型,預計 AL 的價格將在 2026 達到 $0.1426。
AL 在 2031 的價格是多少?
2031,AL 的價格預計將上漲 +17.00%。 到 2031 底,預計 AL 的價格將達到 $0.3112,累計投資報酬率為 +100.95%。
ArchLoot 價格歷史(USD)
過去一年,ArchLoot 價格上漲了 -44.66%。在此期間,ALT 兌 USD 的最高價格為 $0.5240,ALT 兌 USD 的最低價格為 $0.08637。
時間漲跌幅(%)最低價最高價
24h+8.42%$0.1414$0.1556
7d+10.78%$0.1286$0.1556
30d+18.09%$0.1093$0.1599
90d+31.54%$0.1093$0.1793
1y-44.66%$0.08637$0.5240
全部時間-90.53%$0.08637(2024-08-05, 160 天前 )$1.85(2022-11-23, 2 年前 )
ArchLoot 市場資訊
ArchLoot 市值走勢圖
市值
$91,153,436.75
+8.42%
完全稀釋市值
$152,466,548.83
+8.42%
24 小時交易額
$5,355,557.39
-9.19%
ArchLoot 行情
ArchLoot 持幣分布集中度
巨鯨
投資者
散戶
ArchLoot 地址持有時長分布
長期持幣者
游資
交易者
coinInfo.name(12)即時價格表
ArchLoot 評級
社群的平均評分
4.4
此內容僅供參考。
ArchLoot (AL) 簡介
ArchLoot代幣:金融革新的新浪潮 {#archloot-token-new-wave-of-financial-innovation}
隨著數位技術的發展,我們看到許多創新的想法和概念應用到各個領域,其中最受矚目的就是區塊鏈和加密貨幣。在許多可選擇的加密貨幣中,ArchLoot通證展現出許多引人注目的特徵。本文將介紹ArchLoot代幣的歷史背景、核心功能和未來展望。
ArchLoot代幣的歷史背景 {#archloot-token-historical-background}
當我們談到ArchLoot代幣的歷史背景,不得不提及兩個極具歷史意義的網絡:Ethereum(以太坊)和bLockchain(區塊鏈)。ArchLoot代幣出生於這兩大網絡的支持下,並以創新的概念和穩健的平台贏得了投資者的高度認可。
ArchLoot代幣的核心功能 {#archloot-token-key-features}
ArchLoot代幣的主要特性包括獨特的區塊鏈結構、強大的去中心化金融系統、以及可讓用戶隨時隨地進行交易的平台。這些特性都通過前沿的數位技術和高密度的數位加密來實現,它們讓用戶可以在全球任何角落流動通證,且具有彈性和安全性。
ArchLoot代幣的未來展望 {#archloot-token-future-prospects}
作為一種創新的加密貨幣, ArchLoot代幣以其獨特的功能、優良的性能和強大的安全系統在市場中獲得了廣泛的認可。在未來,它有望進一步推動技術和金融市場的發展,成為新一輪金融革新的領航者。
加密貨幣已經從一種邊緣技術成為主流金融工具,它的出現讓人們對未來的支付方式和交易流程產生了全新的認知。儘管市場還帶有許多不確定性,但我們相信,ArchLoot代幣等創新產品將引領全新的趨勢,為我們的金融生活帶來革新和便利性。
AL 兌換當地法幣匯率表
1 AL 兌換 MXN$3.181 AL 兌換 GTQQ1.191 AL 兌換 CLP$155.071 AL 兌換 UGXSh570.521 AL 兌換 HNLL3.921 AL 兌換 ZARR2.941 AL 兌換 TNDد.ت0.51 AL 兌換 IQDع.د202.131 AL 兌換 TWDNT$5.091 AL 兌換 RSDдин.17.541 AL 兌換 DOP$9.421 AL 兌換 MYRRM0.691 AL 兌換 GEL₾0.431 AL 兌換 UYU$6.711 AL 兌換 MADد.م.1.551 AL 兌換 AZN₼0.261 AL 兌換 OMRر.ع.0.061 AL 兌換 SEKkr1.721 AL 兌換 KESSh19.881 AL 兌換 UAH₴6.53
- 1
- 2
- 3
- 4
- 5
最近更新時間 2025-01-11 16:37:18(UTC+0)
如何購買 ArchLoot(AL)
建立您的免費 Bitget 帳戶
使用您的電子郵件地址/手機號碼在 Bitget 註冊,並建立強大的密碼以確保您的帳戶安全
認證您的帳戶
輸入您的個人資訊並上傳有效的身份照片進行身份認證
購買 ArchLoot (AL)
我們將為您示範使用多種支付方式在 Bitget 上購買 ArchLoot
交易 AL 永續合約
在 Bitget 上註冊並購買 USDT 或 AL 後,您可以開始交易衍生品,包括 AL 合約和槓桿交易,增加收益。
AL 的目前價格為 $0.1536,24 小時價格變化為 +8.42%。交易者可透過做多或做空 AL 合約獲利。
購買其他幣種
用戶還在查詢 ArchLoot 的價格。
ArchLoot 的目前價格是多少?
ArchLoot 的即時價格為 $0.15(AL/USD),目前市值為 $91,153,436.75 USD。由於加密貨幣市場全天候不間斷交易,ArchLoot 的價格經常波動。您可以在 Bitget 上查看 ArchLoot 的市場價格及其歷史數據。
ArchLoot 的 24 小時交易量是多少?
在最近 24 小時內,ArchLoot 的交易量為 $5.36M。
ArchLoot 的歷史最高價是多少?
ArchLoot 的歷史最高價是 $1.85。這個歷史最高價是 ArchLoot 自推出以來的最高價。
我可以在 Bitget 上購買 ArchLoot 嗎?
可以,ArchLoot 目前在 Bitget 的中心化交易平台上可用。如需更詳細的說明,請查看我們很有幫助的 如何購買 指南。
我可以透過投資 ArchLoot 獲得穩定的收入嗎?
當然,Bitget 推出了一個 策略交易平台,其提供智能交易策略,可以自動執行您的交易,幫您賺取收益。
我在哪裡能以最低的費用購買 ArchLoot?
Bitget提供行業領先的交易費用和市場深度,以確保交易者能够從投資中獲利。 您可通過 Bitget 交易所交易。
您可以在哪裡購買 ArchLoot(AL)?
影片部分 - 快速認證、快速交易
如何在 Bitget 完成身分認證以防範詐騙
1. 登入您的 Bitget 帳戶。
2. 如果您是 Bitget 的新用戶,請觀看我們的教學,以了解如何建立帳戶。
3. 將滑鼠移到您的個人頭像上,點擊「未認證」,然後點擊「認證」。
4. 選擇您簽發的國家或地區和證件類型,然後根據指示進行操作。
5. 根據您的偏好,選擇「手機認證」或「電腦認證」。
6. 填寫您的詳細資訊,提交身分證影本,並拍攝一張自拍照。
7. 提交申請後,身分認證就完成了!
加密貨幣投資(包括透過 Bitget 線上購買 ArchLoot)具有市場風險。Bitget 為您提供購買 ArchLoot 的簡便方式,並且盡最大努力讓用戶充分了解我們在交易所提供的每種加密貨幣。但是,我們不對您購買 ArchLoot 可能產生的結果負責。此頁面和其包含的任何資訊均不代表對任何特定加密貨幣的背書認可,任何價格數據均採集自公開互聯網,不被視為來自Bitget的買賣要約。
Bitget 觀點
BGUSER-095NY75M
13小時前
fun coin dump only al sell and buy new one
AL0.00%
AKRO0.00%
BGUSER-SX0MCXKN
1天前
Maitland of Al
The term "Maitland" is not a widely recognized term in the field of Artificial Intelligence (AI). However, I can provide some information on the concept of "maintland" or "maintenance land" in the context of AI.
In AI, maintenance land refers to the process of maintaining and updating AI systems to ensure they continue to function effectively and efficiently over time. This can include tasks such as:
1. _Data maintenance_: Ensuring that the data used to train and test AI models is accurate, complete, and up-to-date.
2. _Model maintenance_: Updating AI models to reflect changes in the underlying data or to improve their performance.
3. _Software maintenance_: Ensuring that the software used to deploy and manage AI systems is up-to-date and secure.
4. _Hardware maintenance_: Ensuring that the hardware used to support AI systems is functioning properly and is sufficient to meet the demands of the system.
Importance of Maitland in AI
The concept of maitland is important in AI because it ensures that AI systems continue to function effectively and efficiently over time. This can help to:
1. _Improve performance_: Regular maintenance can help to improve the performance of AI systems by ensuring that they are using the most up-to-date data and models.
2. _Reduce errors_: Maintenance can help to reduce errors and improve the accuracy of AI systems by ensuring that they are functioning correctly.
3. _Enhance security_: Maintenance can help to enhance the security of AI systems by ensuring that they are protected from cyber threats and that any vulnerabilities are patched.
4. _Increase trust_: Maintenance can help to increase trust in AI systems by ensuring that they are transparent, explainable, and fair.
Challenges of Maitland in AI
The challenges of maitland in AI include:
1. _Data quality_: Ensuring that the data used to train and test AI models is accurate, complete, and up-to-date can be a challenge.
2. _Model drift_: AI models can drift over time, which can affect their performance and accuracy.
3. _Software updates_: Ensuring that the software used to deploy and manage AI systems is up-to-date and secure can be a challenge.
4. _Hardware maintenance_: Ensuring that the hardware used to support AI systems is functioning properly and is sufficient to meet the demands of the system can be a challenge.
Best Practices for Maitland in AI
The best practices for maitland in AI include:
1. _Regular maintenance_: Regular maintenance is essential to ensure that AI systems continue to function effectively and efficiently over time.
2. _Data quality checks_: Data quality checks should be performed regularly to ensure that the data used to train and test AI models is accurate, complete, and up-to-date.
3. _Model monitoring_: AI models should be monitored regularly to ensure that they are performing as expected and to detect any drift or degradation.
4. _Software updates_: Software updates should be performed regularly to ensure that the software used to deploy and manage AI systems is up-to-date and secure.
5. _Hardware maintenance_: Hardware maintenance should be performed regularly to ensure that the hardware used to support AI systems is functioning properly and is sufficient to meet the demands of the system.$AL
AL0.00%
CYBER0.00%
BGUSER-SX0MCXKN
1天前
function of Al
The primary function of Artificial Intelligence (AI) is to simulate human intelligence and perform tasks that typically require human intelligence, such as:
1. *Learning*: AI systems can learn from data and improve their performance over time.
2. *Reasoning*: AI systems can reason and draw inferences from data to make decisions.
3. *Problem-solving*: AI systems can solve complex problems by breaking them down into smaller, more manageable parts.
4. *Perception*: AI systems can perceive and interpret data from sensors, such as images, speech, and text.
5. *Action*: AI systems can take actions based on their decisions, such as controlling robots or generating text.
Types of AI Functions
There are several types of AI functions, including:
1. *Natural Language Processing (NLP)*: AI systems that can understand, generate, and process human language.
2. *Computer Vision*: AI systems that can interpret and understand visual data from images and videos.
3. *Machine Learning*: AI systems that can learn from data and improve their performance over time.
4. *Robotics*: AI systems that can control and interact with physical devices, such as robots.
5. *Expert Systems*: AI systems that can mimic the decision-making abilities of a human expert in a particular domain.
Applications of AI
AI has a wide range of applications, including:
1. *Virtual Assistants*: AI-powered virtual assistants, such as Siri, Alexa, and Google Assistant, can perform tasks such as scheduling appointments and sending messages.
2. *Image Recognition*: AI-powered image recognition systems can be used for applications such as facial recognition, object detection, and image classification.
3. *Predictive Maintenance*: AI-powered predictive maintenance systems can be used to predict when equipment is likely to fail, allowing for proactive maintenance and reducing downtime.
4. *Healthcare*: AI-powered healthcare systems can be used to diagnose diseases, develop personalized treatment plans, and improve patient outcomes.
5. *Finance*: AI-powered finance systems can be used to detect fraud, predict stock prices, and optimize investment portfolios.
Benefits of AI
The benefits of AI include:
1. *Increased Efficiency*: AI can automate repetitive tasks, freeing up human resources for more strategic and creative work.
2. *Improved Accuracy*: AI can perform tasks with a high degree of accuracy, reducing the risk of human error.
3. *Enhanced Decision-Making*: AI can provide insights and recommendations that can inform human decision-making.
4. *Personalization*: AI can be used to personalize products and services, improving customer satisfaction and loyalty.
5. *Innovation*: AI can be used to develop new products and services, driving innovation and growth.
Challenges of AI
The challenges of AI include:
1. *Data Quality*: AI requires high-quality data to function effectively, which can be a challenge in many applications.$AL
AL0.00%
VIRTUAL0.00%
BGUSER-SX0MCXKN
1天前
Al Blockchain
Yes, there are several AI blockchains that combine the benefits of artificial intelligence (AI) and blockchain technology. These blockchains use AI to improve the efficiency, security, and scalability of blockchain networks. Here are some examples of AI blockchains:
1. _SingularityNET_: SingularityNET is a blockchain-based platform that allows developers to create and deploy AI models. It uses a decentralized network of nodes to provide a secure and scalable infrastructure for AI applications.
2. _Numeraire_: Numeraire is a blockchain-based platform that uses AI to predict stock prices and provide investment recommendations. It$AL
AL0.00%
BGUSER-SX0MCXKN
1天前
Why 84% Of Al projects fail
According to a study by Gartner, 84% of AI projects fail to deliver expected results. There are several reasons that contribute to this high failure rate. Here are some of the most common reasons:
1. *Lack of Clear Goals and Objectives*: Many AI projects fail because they lack clear goals and objectives. Without a well-defined problem statement, it's difficult to develop an effective solution.
2. *Insufficient Data*: AI models require high-quality and relevant data to learn and make accurate predictions. However, many organizations lack sufficient data or have poor data quality, which can lead to biased or inaccurate models.
3. *Inadequate Infrastructure*: AI projects require significant computational resources, storage, and infrastructure. However, many organizations lack the necessary infrastructure to support AI projects, which can lead to delays, cost overruns, and poor performance.
4. *Limited Expertise*: AI requires specialized skills and expertise, including data science, machine learning, and software development. However, many organizations lack the necessary expertise to develop and deploy AI models effectively.
5. *Poor Project Management*: AI projects are complex and require careful planning, execution, and monitoring. However, many organizations lack the necessary project management skills and experience to manage AI projects effectively.
6. *Overemphasis on Technology*: AI projects often focus too much on the technology$AL
AL0.00%
相關資產
相近市值
在所有 Bitget 資產中,這8種資產的市值最接近 ArchLoot。